This Guide was developed to provide contractors and homeowners with general information on best practice approaches to installing high-efficiency (replacement) furnaces in existing residential and small commercial buildings.
Foreword

This Guide provides homeowners and HVAC contractors with general information on completing high-efficiency furnace retrofits. It provides an overview of key steps involved in the furnace retrofit process including pre-changeout, installation, commissioning, and education and maintenance. Additionally, common challenges encountered by HVAC contractors during furnace installation are covered with suggested solutions for overcoming these barriers discussed. This publication is not intended to replace residential furnace installation training materials developed for HVAC contractors.

Acknowledgements

This publication was developed through consultation with many individuals and organizations involved in the residential furnace industry. This Guide would not have been possible without the support and guidance of FortisBC, the Province of British Columbia, the Thermal Environmental Comfort Association (TECA), the Heating, Refrigeration, and Air Conditioning Institute of Canada (HRAI), and Energy Star®. This Guide was prepared by RDH Building Science Inc. and Ecolighten Energy Solutions Ltd.

Disclaimer

While care has been taken to confirm the accuracy of the information contained herein, the authors, contributors, funders, and publishers assume no liability for any damage, injury, or loss that may be incurred or suffered as a result of the use or reliance on the contents of this Guide. The views expressed here do not necessarily represent those of any individual contributor.
Overview

A high-efficiency or “condensing” furnace can significantly reduce energy consumption in a typical home; however, without a quality installation, the furnace may never deliver its expected energy savings. Energy Star® has found that new furnaces often do not perform to their rated efficiency with some systems suffering up to a 30% reduction in performance as a result of improper installation.¹

Replacement furnaces, in particular, need special consideration because they must interact with existing ductwork and other building systems. Replacement installations with inadequate preparation and follow-up will not only affect energy savings, but can also influence equipment longevity and occupant comfort. For example, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) estimates the average life expectancy of a new gas furnace to be 15 years, largely as a result of varying levels of installation quality.² This is significantly less than the general industry consensus and the furnace lifespans specified by many manufacturers.

A recent study on furnace installation quality completed for FortisBC indicated that on average only 46% of important installation criteria were in compliance with best practices.³ This represents a large gap between expected and actual furnace performance. This Guide will attempt to address this gap by highlighting the most important steps and procedures needed to optimize the performance of replacement furnaces in existing houses. Note that the primary focus of this document is on specific measures that improve energy performance, occupant comfort, and equipment durability. Health and safety concerns are not covered; refer to your local building code, the Gas Safety Regulation under the BC Safety Standards Act, and materials from the BC Safety Authority for further information.

The gap between conventional and quality retrofit furnace installations represents a significant opportunity for industry players who promote and follow best practices. By identifying the key elements of excellent furnace retrofits, this Guide can be used as a tool to educate consumers on the advantages of quality installations, stimulating demand for contractors applying best practices. Some further advantages for contractors and consumers include:

<table>
<thead>
<tr>
<th>CONTRACTOR BENEFITS</th>
<th>CONSUMER BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with future code, permit, and program changes</td>
<td>Greater utility bill savings</td>
</tr>
<tr>
<td>Differentiation of excellent from least-cost, low-quality installations</td>
<td>Better furnace performance (thermal comfort, noise reduction)</td>
</tr>
<tr>
<td>Improved client relationships leading to business opportunities</td>
<td>Increased furnace lifespan</td>
</tr>
</tbody>
</table>

² ASHRAE Journal, October 2012, pg. 84.
House as a System

Before discussing the specific procedures needed for high quality furnace installation retrofits, it is important to discuss the connections between the heating system, the building enclosure (also called the envelope or ‘skin’), and other electrical and mechanical systems. Any change to one element in the building will have an impact on the furnace. For example, additional attic, wall or crawlspace insulation and/or new windows and air sealing can lower building heat loss; a lower capacity furnace may now be able to accommodate your building’s heating demand.

At any given moment, heat is flowing through the building enclosure or being generated within it. The following graphic introduces some of the typical heat flows that exist at any given moment within a building. Changes that affect any one of these heat flows can influence building heating demand and, subsequently, the selection of your new furnace.

1. Solar radiation
2. Space heating
3. Appliances
4. Lighting
5. Fireplaces
6. Occupants
7. Windows and doors
8. Walls
9. Basement
10. Attic
11. Dryer ducts
12. Exhaust fans (ventilation system)
13. Combustion appliance flues

Figure 1: Common building heat flows
Hints and Tips

#1 IMPACT OF OTHER ENERGY UPGRADES

Your home’s heating demand is heavily influenced by other energy-related components in the building. Renovation projects that include building enclosure, ventilation, or control system improvements will have an impact on the sizing of your new furnace. Be prepared to discuss any past or future changes to your home with the furnace contractor when he/she arrives.

#2 KEY FURNACE INSTALLATION CRITERIA

Always ask the furnace contractor to include the following items when he/she provides you with a quotation:

- Heat load calculation to size the new furnace
- Double piped venting with combustion air taken from outside
- A condensate pipe connected to a drain or pump
- A high quality filter with a tight fitting cabinet door for easy filter replacement
- Furnace cabinet leveled to ensure condensate drainage
- Evaluation of orphaned DHW tank venting

Many of the above items can be reviewed visually allowing you to easily verify the quality of your furnace installation.

#3 BENEFITS OF A MATCHING THERMOSTAT AND WIRING

Did you know that many new gas furnaces have features that can only be unlocked if a matching thermostat and wiring are selected? Modern staged furnaces match their heating output to building heating demand more precisely than single-stage appliances. This can improve occupant comfort and increase energy savings. To fully achieve these benefits, the new thermostat must be able to communicate different heating levels to the staged furnace and the wiring must also be matched.

#4 MAINTAINING YOUR NEW FURNACE

Regular maintenance schedules are critical for reliable furnace operation. Frequent maintenance can increase the service life of your equipment and will save you money on your utility bills. Always ensure that key furnace components such as the filter are replaced correctly and in a timely manner. Set up a maintenance contract with your HVAC contractor to guarantee that equipment servicing is completed properly and on a regular basis.
Identifying Quality Installations

Several important characteristics of quality furnace installations can be observed visually. The following images compare common industry practices against furnaces that have been installed according to best practices. The example quotation sheet on the next page can also be used as a tool to verify quality furnace installations.

<table>
<thead>
<tr>
<th>Common Practice</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace Venting</td>
<td></td>
</tr>
<tr>
<td>A two pipe venting system should be installed that</td>
<td></td>
</tr>
<tr>
<td>provides combustion air to the furnace directly from</td>
<td></td>
</tr>
<tr>
<td>outside.</td>
<td></td>
</tr>
<tr>
<td>Condensate Removal</td>
<td></td>
</tr>
<tr>
<td>Acidic condensate should be drained or pumped directly</td>
<td></td>
</tr>
<tr>
<td>into the plumbing system. Some jurisdictions require</td>
<td></td>
</tr>
<tr>
<td>the condensate to be neutralized before entering the</td>
<td></td>
</tr>
<tr>
<td>sewer line.</td>
<td></td>
</tr>
<tr>
<td>Furnace Filter</td>
<td></td>
</tr>
<tr>
<td>The filter cabinet must have an easy serviceable</td>
<td></td>
</tr>
<tr>
<td>tight-fitting door. Filter selection can be discussed</td>
<td></td>
</tr>
<tr>
<td>with your contractor.</td>
<td></td>
</tr>
<tr>
<td>Thermostat & Wiring</td>
<td></td>
</tr>
<tr>
<td>A thermostat should be selected to match the stage(s)</td>
<td></td>
</tr>
<tr>
<td>of the new furnace. The thermostat wiring must also</td>
<td></td>
</tr>
<tr>
<td>be matched.</td>
<td></td>
</tr>
</tbody>
</table>
QUOTATION

HVAC COMPANY LOGO HERE

Date:
Quotation Number:

BUYER INFORMATION

<table>
<thead>
<tr>
<th>First Name:</th>
<th>Last Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>Province:</th>
<th>Postal Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTRACTOR INFORMATION

<table>
<thead>
<tr>
<th>Rep:</th>
<th>Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT DETAILS

Basic Install

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Cost</th>
</tr>
</thead>
</table>

Furnace

<table>
<thead>
<tr>
<th>Brand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model:</th>
<th>AFUE %:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- □ Single-Stage □ Two-Stage □ Variable

<table>
<thead>
<tr>
<th>Gas Permit (#):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Thermostat

<table>
<thead>
<tr>
<th>Brand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Filter

<table>
<thead>
<tr>
<th>Brand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

System Optimization

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Cost</th>
</tr>
</thead>
</table>

Venting

- □ Two-Pipe Venting System

Thermostat

- □ Matched □ Smart Thermostat

Filter

<table>
<thead>
<tr>
<th>Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- □ Return Air Drop □ Turning Vanes

- □ Return Air Drop Elbow □ Supply Air Plenum

- □ Lift Kit □ Other:

Ductwork Modifications

SUBTOTAL:

<table>
<thead>
<tr>
<th>PST:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GST:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Steps to a Better Installation

Before embarking on a furnace retrofit, it is important for the contractor to consider several items that will more generally influence the viability of the installation.

Firstly, thought should be given to codes, regulations, and permits in the local jurisdiction to ensure that health and safety considerations are addressed. Refer to B149.1 Natural Gas and Propane Installation Code, BC Building Code, and the BC Safety Authority⁴ for further information on health and safety regulations related to furnace installations. Worksafe BC regulated issues such as asbestos abatement can prevent a furnace installation from occurring if not mitigated beforehand and should also be reviewed.

Secondly, consideration should be given to the mechanical room layout/spacing and existing equipment as this may affect the viability of the furnace retrofit. In particular, some combustion appliances may be dependent on the existing furnace system for venting. These can include hot water tanks and other equipment related to the home HVAC system. In this case, hot water tank venting must be evaluated after the new furnace is installed to determine whether venting changes are required to accommodate an ‘orphaned’ domestic hot water tank.

Note that different furnace configurations will require subtle differences when it comes to installation, venting, draining, ducting, commissioning, and servicing. See below for typical furnace configuration options:

⁴ BC Safety Authority provides gas installation permits for most municipalities in British Columbia; however, seven municipalities issue their own permits and manage their own safety systems; more information is available at http://www.safetyauthority.ca/permits-and-approvals/installation-permits/gas.
CONTRACTOR SECTION

The furnace retrofit installation process can be separated into four discrete steps that will be outlined in the following sections. Generally, a homeowner will be interested in a high efficiency furnace retrofit when either an existing furnace fails or when other upgrades are being completed on the home. Follow the flowchart below to ensure that the necessary steps are followed for an excellent furnace retrofit installation.

Step 1: Pre-Changeout
An initial assessment of the existing furnace, exhaust and ducting system, and the overall house condition and occupancy is completed **pre-quote** in order to establish proper furnace sizing and any ducting modifications that must be made prior to installing the new furnace. This typically includes a heat load calculation for the house.

Step 2: Installation
These details are pertinent to the **day of the new furnace installation**. The furnace installation must meet all Code requirements and should be installed in a manner that maximizes performance, durability and occupant comfort. Ideally, the contractor should be member of TECA\(^5\) and/or HRAI\(^6\).

Step 3: Commissioning
Commissioning must be completed by a licensed gas fitter **after the furnace is installed**. At furnace start-up, the necessary commissioning tests are completed and recorded to ensure the furnace is operating according to the manufacturers specifications.

Step 4: Education and Maintenance
The homeowner is provided with the commissioning checklist and manufacturer’s information and then informed of the warranty and operation and maintenance procedures for the new furnace **before the contractor leaves**.

\(^5\) Thermal Environmental Comfort Association (TECA) provides guidelines and courses; more information is available at www.teca.com

\(^6\) Heating, Refrigeration and Air Conditioning Institute of Canada (HRAI) provides guidance and courses; more information is available at www.hrai.ca
Pre-Changeout

Before replacing existing furnace equipment, it is necessary to complete some tests and calculations as well as visually inspect the current system arrangement in order to accurately size the new furnace and consider changes in configuration, if needed. Furthermore, this pre-investigation may determine whether additional work beyond the localized furnace installation is needed (ductwork improvements, asbestos abatement). While there are several important action items that should be completed before installing the new furnace, three key items are discussed in detail below:

1. **Evaluation of Past or Future Home Upgrades**

Planned or recent home retrofits and occupancy can have a significant effect on replacement furnace sizing. New heating and ventilation equipment or building enclosure changes can decrease (or sometimes increase) the heating requirements of a building: this can result in incorrect furnace sizing if not addressed. Contractors should discuss recent or future building changes with the homeowner to ensure that any and all modifications will be accounted for in the heat load calculations.

Some possible impacts of building modifications include:

- Additional basement/crawlspace, attic and/or wall insulation (with higher R-value) decreases building heat loss and reduces building heating requirements. A lower capacity furnace may now be acceptable.

- A new bathroom or kitchen exhaust fan, or other ventilation changes, may remove higher volumes of conditioned air from the home than the previous equipment, increasing the building heating demand at a given moment.

- High performance windows and doors may reduce heat loss (with lower U-value), but can also allow greater solar gains into a home, depending on the glass coating and solar heat gain coefficient. This can have an enormous affect on building heating requirements.

- New heating equipment like gas fireplaces, wood stoves, room heaters or heat recovery ventilators might affect the load on the furnace, albeit the furnace is often needed as a backup.

- Building airtightness improvements with new windows and/or air sealing can reduce the loss of conditioned air as well as reduce the introduction of cold air through air leaks. A more airtight building will require less space heating.

The services of a Certified Energy Advisor can be very helpful prior to or during this stage for both identifying improvements as well as conducting a pressurized airtightness test and calculating the whole-house heating demand (addressing item #3 below).

1. See the HPO Best Practices for Air Sealing and Insulation Retrofits for Single-Family Homes; more information is available at https://hpo.bc.ca/best-practices-air-sealing-and-insulation

2. Assess Existing Ductwork

The existing ductwork should always be reviewed prior to completing a furnace retrofit. Most high efficiency furnaces need more cubic feet per minute (CFM) of air flow than existing furnace systems and the existing ductwork must be able to accommodate this extra air flow in order to function optimally. Furthermore, the ductwork for many existing systems may not even match the existing furnace system – an important consideration before proceeding with a retrofit. The contractor should always complete an external static pressure or ESP reading (measurement of duct friction) in order to determine whether the ductwork and fittings require modifications prior to installing the new furnace. Ductulator® calculations (see Figure 5) can be used to provide quick, general insight into the existing ductwork capacity. The ductwork system should be designed to have an ESP reading in alignment with TECA or HRAI recommendations, once the new furnace is installed. Readings that fall outside this range indicate that the ductwork may need modifications; often duct air sealing and/or additional ductwork.

In situations where the existing ESP is very high and it is not possible to change or include any additional duct runs, the solution may be to select a high efficiency furnace that has a lower air flow, which is one BTU output category below the calculated heat load. In this case, an additional or supplementary heat source would then be required to meet the design temperature.

3. Heat Load Calculations

Heat loss / heat gain calculations are the basis by which a new furnace is selected. In effect, all sources of heat loss (building enclosure, ventilation, etc.) are combined with sources of heat gain (occupants, appliances, heat recovery, etc.) in order to estimate the needed output of the furnace.

TECA and HRAI have explicit methodologies with worksheets and software for heat load calculations that should be used for furnace sizing to ensure that heat load estimates are completed appropriately.
Installation

The installation phase is where the furnace equipment is selected and integrated into the existing space heating system and ductwork. The Gas Safety Regulation (administered by the BC Safety Authority and seven municipalities) and the furnace manufacturers instructions will generally provide basic guidance on the furnace installation sequence and health and safety considerations. TECA and HRAI provide additional materials on the selection and installation of new furnace equipment (See Additional Resources section).

While there are several measures that have an impact on the performance of a new furnace installation, the following items are critical to ensuring the new equipment achieves the full energy-savings, comfort, and durability that the homeowner is expecting from the new furnace. The following is a summary of important considerations with locations indicated on the accompanying high-boy furnace graphic. Note that similar considerations are applicable to down-flow and horizontal furnaces; however, ducting and piping may be located at different locations due to differing configurations.

1. Tapered transition on return air drop
2. Sealed ductwork joints
3. Radius throat elbow and/or turning vanes
4. Sealed, accessible filter cabinet with quality filter
5. Furnace leveled to drain as per manufacturer’s specs
6. Matching thermostat and compatible wiring
7. Double pipe combustion venting

Figure 7: High-boy furnace install diagram
1. **Tapered return air drop**

Poor duct fittings can have a significant impact on the performance of a new furnace. For example, a tapered transition at the top of the return air drop can reduce turbulent air flow and as a result can lower the static pressure within the ductwork. This decreases the load on the furnace blower fan which can lead to lower electricity consumption, better air flow, and may produce quieter furnace operation.

2. **Sealed ductwork joints**

The connection between the existing ductwork and new fittings / ducting should be air sealed using aluminum tape or paint-on mastic. Any air leaks in the existing ductwork should also be sealed where possible. The primary reason for air sealing the ductwork is to reduce the possibility of generating negative air pressure in the vicinity of the furnace/ hot water tank, which can cause down drafting of hot water tank B-vents. Well sealed ductwork also ensures that the designed air volumes are delivered to different locations in the home thereby improving thermal comfort.

3. **Radius throat elbow and/or turning vanes**

Installing turning vanes in the return drop elbow can reduce air turbulence decreasing vibration noise. Turning vanes spread return air more uniformly across the filter media ensuring that particulates do not accumulate in one region of the filter reducing the filter service life. Together, a radius throat elbow and turning vanes can result in more uniform and a lower pressure drop at the fitting. This can decrease the load on the furnace blower fan leading to electricity savings.

4. **Sealed, accessible filter cabinet with quality filter**

An important consideration for a furnace retrofit is the filtration system comprised of the furnace filter cabinet and filter media. The filter cabinet should provide a positive door seal and should be well sealed to eliminate any air bypass around the cabinet or filter. This will reduce dust particulates building up in the secondary heat exchanger increasing furnace longevity and reducing energy use. The filter cabinet should also be easily accessible and non-obstructed, so that the filter can be easily replaced without bending or damage occurring. A quality filter media should be selected with the homeowner that matches their design requirements (filter efficiency). Thick, pleated filter media with more surface area take longer to load up as compared to thinner filters. This will result in reduced filter replacement. Some heating system thermostats can be programmed to remind the homeowner to replace the filter near the end of the filter’s service life.
5. **Proper furnace placement and leveling**

High efficiency condensing furnaces produce acidic condensate during operation. This condensate must be effectively drained from the furnace or corrosion damage may occur. Most manufacturers recommend leveling the furnace to promote condensate drainage out of the system. Always refer to the manufacturer’s leveling requirements before installation. An option is to install isolation vibration pads to help to level the furnace. The new furnace system should always be installed in a position that is easily accessible to facilitate future service.

6. **Matching thermostat and compatible wiring**

Many new, high efficiency furnaces have the option of two or more stages of heat output (correlating to gas valve position) and have variable speed furnace blower motors. These new furnaces should be accompanied by a matching thermostat in order to take advantage of these variable heating and distribution outputs. A matching programmable thermostat may reduce energy use and produce more precise comfort levels by maintaining more consistent low-fire operation when heating demands are lower, limiting intermittent high-fire operation (short cycling) of the furnace. Low voltage thermostat (LVT) wiring should be utilized that matches the new thermostat having an appropriate number of wires.

7. **Double pipe combustion venting**

It is highly recommended that new furnace installations be accompanied by a double pipe system with combustion air taken directly from the outside. This venting system provides more controlled combustion as ambient air in the mechanical room is no longer relied upon for combustion. Furthermore, any holes in the building enclosure that were previously used to provide combustion air can possibly be sealed (if they do no affect other naturally aspiring combustion appliances), decreasing air leakage heat loss and increasing occupant comfort (reduction in unwanted drafts). These changes improve overall home energy performance and increase the service life of the new furnace equipment. A two pipe system can reduce several common heating/ventilation issues including air leakage, incidence of unwanted smells, and equipment performance problems related to building depressurization.
Commissioning

Commissioning is the process through which the new furnace system is verified and adjusted so that it performs per the manufacturer’s and owner’s requirements. Beyond visual inspection of components such as the filter media, a series of tests should be completed with the help of instrumentation (manometers, thermometers). The results of the testing are then compared against acceptable values (often manufacturer specified) in order to calibrate the new furnace and the information is recorded on a commissioning checklist (to be provided to the homeowner). Specific guidance on the procedures and equipment needed for commissioning is provided in TECA and HRAI documentation (See Additional Resources section).

A simplified commissioning process for the new furnace will include at least the following:

- Inspection of individual system components including filters, wiring, and gas lines.
- Complete a pressure check of the supply gas line "up stream" and manifold gas pressure "down stream" of the appliance gas valve. Adjust “down stream” manifold pressure as needed to meet the furnace manufacturer's nameplate value.
- Check the firing rate of the furnace by “clocking-the-meter”. The high-firing rate of the furnace must not be outside 10% of the rated BTU/hour input. Alternatively, the manifold orifice size can be determined in order to confirm the furnace rated BTU/hour input. In this case, the size of the orifice is visually determined by the drill size of the hole and the manifold pressure is then measured with a manometer. Together this information is used to determine the amount of gas that will flow into the burner.
- Calculate the furnace temperature rise by measuring the air temperature of the supply and return air, respectively. Confirm that the temperature rise lies within the manufacturer’s stated tolerance. For example, on a two-stage gas valve furnace, the temperature rise should be taken at both high-fire and low-fire.
- Complete an external static pressure test (ESP) and confirm that the tested value is aligned with TECA or HRAI recommendations. Complete ductwork modifications as necessary. Refer to page 20 under solutions for both low and high ESP.
- Document all testing information on a commissioning checklist and record any outstanding issues for follow up with the homeowner.

Figure 15: Empirical tests for commissioning new furnace

Figure 15: Empirical tests for commissioning new furnace
Education and Maintenance

One of the biggest factors in homeowner satisfaction with a new furnace system is the homeowners’ own understanding of how to operate and maintain the system. The contractor should facilitate this understanding and should clarify any owner responsibilities once the installation is complete. In addition, this action provides an opportunity for the contractor to propose a service plan for the new furnace.

Always provide the homeowner with all furnace related documentation and inform them of its location (e.g. furnace pocket) once the furnace is commissioned. Note that this is a Code requirement. The contractor should also demonstrate basic furnace operation and maintenance procedures in order to ensure that the homeowner is comfortable operating their new equipment. The following list includes documentation that should be provided and topics that should be reviewed / demonstrated with the homeowner before leaving the site:

- Manufacturer’s product literature (furnace, thermostat, filter)
- Warranty coverage of new furnace and thermostat including servicing requirements for compliance with warranty policy
- Commissioning checklist (empirical results from commissioning phase) - this data is also commonly recorded with a felt pen on the ductwork
- Contractor contact information for future maintenance
- Basic operation of the new furnace – new high efficiency furnaces generally have at least two operating options (low-fire, high-fire)
- Thermostat operation (demonstrate programming if applicable)
 - Benefits of furnace optimization (energy savings, thermal comfort)
- Temperature set-back procedures
- Proper labeling of switches
- Maintenance
 - Filter replacement – what products are acceptable (size, efficiency, etc.)
 - Annual equipment servicing requirements
 - Establishing a maintenance schedule
 - Benefits of a maintenance contract versus year-by-year calls

Figure 16: The furnace pouch is an excellent location to store furnace documentation.
Challenges and Solutions

There are a variety of challenges that can lead to poor performance in retrofit furnace installations. These challenges can result in higher energy consumption, decreased equipment longevity, and sub-optimal occupant comfort if not addressed. The following section outlines common challenges encountered by HVAC contractors and the suggested solutions for overcoming these barriers.

Filter cabinet and filter media selection

- **Description**: Thick, pleated filters have increased surface area and typically do not load up with particulates as quickly as standard filter media. Depending on the homeowner, it may be prudent to select this filter media type if a longer service life and decreased maintenance requirements are desired. If the furnace cabinet is installed in a location that does not provide adequate room for filter replacement, the homeowner is unlikely to replace the filter when its service life is exceeded. These factors can lead to a higher pressure drops at the filter and consequently increased loading on the furnace blower fan leading to: increased electricity consumption, reduced air flow, lower efficiency, and shorter equipment life.

- **Challenges**
 - **FILTER CABINET SEALING**: The impact of poorly sealed filter cabinets on high-efficiency gas furnace performance is not well understood within industry. Unlike older standard and mid-efficiency furnaces, keeping the heat exchangers clean from particulates is very important for heat transfer efficiency, quiet operation, reduced service issues, and equipment longevity. In the heat exchangers of high-efficiency furnaces the air is traveling though very tight or small openings resulting in a much a lower tolerance for particulates and other obstructions.
 - **FILTER REPLACEMENT**: Inexpensive or even higher quality 1” filters are commonly used as a result of space and cost considerations. While the pressure drop readings for virgin 1” filters are quite good, their performance can drop quite quickly if they are not replaced on a regular basis. Due to significantly less surface area, 1” filters tend to load up quickly leading to higher stresses on the furnace if they are not replaced on a regular basis.
 - **FURNACE BLOWER MOTORS**: High-efficiency furnaces typically incorporate very efficient furnace blower motors that may have difficulty providing the required air flow if the furnace filter loads up prematurely. In order to compensate, some variable speed ECM motors may ramp up (speed up) in order to produce the desired air flow required for adequate temperature rise across the heat exchanger: this can result in noisy operation, higher electricity consumption, and increased service calls due to built in high temperature lock out and / or potential degradation to the heat exchanger due to over heating.
 - **SPACE CONSIDERATIONS**: Larger filters typically require a larger furnace footprint; however, space is often limited in furnace replacement scenarios. Commonly, the original furnace was installed in in an unfinished basements that has since been renovated and the furnace is now framed away in a very tight mechanical room: this constrains easy access to filter cabinet to make the necessary modifications.
Filter cabinet accessibility and filter media selection (Continued)

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Thicker, pleated filters have longer service lives and can reduce furnace maintenance requirements. When there are obstructions near the furnace cabinet, it is important to come up with a serviceable filter solution in order to protect and maintain the furnace.</td>
</tr>
<tr>
<td>• Space is rarely an issue in down-flow or horizontal flow furnace orientations. In up-flow furnace positions, there are a variety of options when limited installation space is available:</td>
</tr>
<tr>
<td>• The most common solution is to build a lift kit (sheet metal / ductwork) and install the filter at the furnace base.</td>
</tr>
<tr>
<td>• A second option is to locate the filter elsewhere in the return air drop ductwork.</td>
</tr>
<tr>
<td>• A third option is to move the domestic hot water tank or to move a wall (where possible) in order to accommodate the filter.</td>
</tr>
</tbody>
</table>
Thermostat and wiring compatibility

Description

Thermostat selection and wiring can greatly enhance the operation of a furnace retrofit. For example, a new furnace with a staged gas valve will not have access to all its features if a non-matching thermostat (single-stage) is selected. Furthermore, the number of connectors must also match between the furnace and thermostat if greater functionality is desired. Thermostat / wiring incompatibilities may result in lower furnace efficiency and thermal comfort. Modern (two-stage or greater) thermostats can also be programmed to remind the user of the recommended filter replacement date(s).

Challenges

- **ECM MOTORS**
 - In high-efficiency furnace replacements, the new furnace fan speed (CFM) and existing ductwork are often not compatible. As a result, manufacturers have come up with system improvements that work with existing duct systems to improve comfort levels and reduce operating costs. Utilization of a staged gas valve with variable speed blower motors is the preferred choice for most installers and customers.

- **COMPATIBLE THERMOSTAT AND WIRING**
 - In order to provide access to all of the features of the new furnace, a compatible thermostat with the same number of wires is required.

- **EXISTING CONDITIONS**
 - Most existing thermostats have 2-wire LVT wiring, whereas most compatible thermostats now require multiple wires.

Solutions

- Fish in new wiring with the appropriate number of wires and connect them in such away that it matches the operation of the staged gas valve.

- Where fishing in a new wire is too difficult, there are three solutions:
 - Find a new thermostat location where there is space for the appropriate number.
 - Locate the thermostat at / or near the furnace and use a remote sensor installed at the old thermostat location. This is an inexpensive option, however, every time a building occupant wants to view or change the settings, a trip down to the furnace is required.
 - Use a wireless thermostat. Note that wireless thermostats may be an additional expense and may require battery replacement as part of servicing.
Single pipe exhaust system

Description

Single pipe exhaust systems rely on air drawn from within the home for combustion. This often means that passive vents must be installed to provide makeup air for the furnace causing unnecessary heat loss. Furthermore, it is difficult to control furnace combustion in this configuration and this may cause poor system efficiency and lower equipment service life. There is also the risk of depressurizing the home if more air is exhausted than supplied: combustion gases can spill out of the furnace into the home threatening occupant safety.

Challenges

ROUTING

Unlike a standard or mid-efficient B-vented furnace, a high-efficiency gas furnace requires PVC⁹ venting. Locating a 2-pipe route to the exterior can be challenging, particularly when the furnace is in the middle of a finished home.

INSTALLATION DETAILS

Horizontal PVC venting must be supported every 6’ along the route.

PENETRATIONS

Every venting route will ultimately penetrate the exterior vapour barrier, insulation and rain screen.

SIDE YARDS

Some Authorities Having Jurisdiction (AHJs) do not allow side yard venting in close proximity to neighbouring houses.

⁹ Refer to Gas Directive Plastic Venting released by the BC Safety Authority for requirements for plastic vents; more information is available at http://www.safetyauthority.ca/alert/gas-directive-plastic-venting
Single pipe exhaust system (Continued)

Solutions

- There are three commonly used vent terminations and each has a preferred function. Note that BC Housing recommends venting combustion gases and terminating new vent pipes at the roof where possible\(^\text{10}\).

HORIZONTAL

The most common venting route is horizontally through the exterior wall. Finding a clear joist space or dropping the vent below the finished ceiling should be considered. A common solution is to remove the redundant combustion air pipe, so that this space can be used for PVC venting. In this case, a concentric vent termination kit can utilize the existing hole through the exterior wall. If the decision is to find a new route, a two hole penetration through the exterior wall can be terminated in two ways: with a termination kit flush to the wall or with two PVC pipes with elbows up and down to restrict exhaust air backdrafting through the combustion pipe.

VERTICAL

Another common venting route is through the ceiling or roof. This can be more easily achieved in single level ranchers or in two-storey homes by using the B-vent route through the floor above, particularly in situations where there is either no gas DHW tank or a condensing DHW is in place or being considered. When replacing the existing B-vent route, a concentric termination can be used at the existing B-vent flashing.

DOWN

A less common venting route is down and out - typically, this is used in a crawlspace application. Special drain / vent kits are needed to deal with condensation in this configuration, which are typically supplied by the manufacturer.

- Where the venting penetrates the exterior vapour barrier, insulation, and rainscreen, attention must be given to insulation repair, air sealing, and drip flashings to ensure that the venting does not compromise the building enclosure.

- In jurisdictions that do not permit side yard venting where the only route is horizontal, venting may have to exit the building enclosure and travel up the exterior of the building - often through a soffit, terminating above the roof. There are two considerations in this situation: the exterior venting must be insulated along its length and a custom, longer concentric vent termination will be needed to maintain a single flashing at the roof level. If options are limited, applications can be made to the AHJ for a variance and they may approve sidewall venting under certain circumstances.

\(^{10}\) See the BC Housing Builder Insight Bulletin #8: Sidewall Venting of Gas Appliances; more information is available at https://www.bchousing.org/publications/BuilderInsight10_SidewallVentingGasAppliances.pdf.
Inadequate condensate removal

Description

During regular operation, condensing furnaces produce acidic condensate that can damage equipment if not drained properly from the furnace system. Furnace retrofits that are not leveled as per the manufacturer’s recommendations and/or that have inadequate plumbing connections may have difficulty removing condensate effectively from the system. This can corrode furnace components and reduce equipment service life.

Challenges

INSTALLATION DETAILS

High-efficiency furnaces must have provisions to drain condensate and Code requires that the condensate be removed via a warm (interior) drain upstream of a wet trap.

- Not all furnace locations have an accessible floor drain - this will necessitate a condensate pump.
- The condensate line can become crimped.
- Some AHJs require an acid neutralizer for the condensate.

Solutions

- The preference is to find a drain that does not require a pump. However, when a pump is required, there are minimal limitations on the condensate drain route. The drain piping material will often need to bend; therefore, it is important to avoid kinks.
- Always check with the AHJs to determine if an acid neutralizer is required for the condensate. If an acid neutralizer is installed, the limestone chips or other acid neutralizing substance must be replenished as part of regular maintenance.
Incorrect duct fittings

Description

Improperly sized or incorrect ducting components can lead to increased air turbulence in the duct system, which increases the load on the furnace blower fan. This may lead to increased electricity use, reduction in air flow, elevated noise, frequent replacement of the filter, and increased service requirements. Poorly designed and installed ducting can also reduce the distribution of heat within the home due to excessively high or low air pressures: this can lead to poor thermal comfort for building occupants.

Challenges

EXTERNAL STATIC PRESSURE

At the pre-changeout inspection, ESP measurements should be taken and used (as a guide) to determine the appropriate retrofit furnace sizing and to identify any ductwork modifications. The ESP measurements indicate whether the ductwork is capable of moving the quantity of air that is required for the new furnace to operate within the manufacturers specifications, distributing the heat reasonably evenly without excessive noise. Significant ESP improvements can be made by adjusting the ductwork directly adjacent the retrofit furnace.

TESTING ACCESS

In some furnace orientations (counter-flow), where the ductwork is in a slab or within the building structure, it is not possible to access the necessary ducting to take an ESP measurement. In this situation, count and measure the supply air and/or return air outlets and use a “Ductulator” (as a guide) to estimate the needed furnace sizing and ductwork modifications. Note that a combination of results is possible on both the supply side and the return side.

DEALING WITH RESULTS

Possible results of the pre-changeout ESP may result in the following:

- ESP in close/proper range
- High ESP
- Low

NOTE: When taking measurements on the return air side, the numbers will come up as negative. However, since we are only concerned with the work (CFM) the blower has to deliver, these numbers are recorded as positive.
Incorrect duct fittings (Continued)

Solutions

- Potential solutions for **High ESP**:
 - Drop down furnace one BTU size (suggest supplementary heat).
 - Add to the existing ductwork via a new supply/return duct.
 - Dump supply air at the furnace via a spill grill.

- Potential solutions for **Low ESP**:
 - After some discussion on comfort levels with the homeowner (occupant), adjust and partially close some of the return air grilles / supply air grilles in order to raise the ESP reading and then lock the grille dampers in position. Check if there are existing balancing dampers (typically near the furnace) which may be adjusted to increase static pressure. Recheck the ESP after all modifications.
Quotation

Date:

Quotation Number:

Buyer Information

<table>
<thead>
<tr>
<th>First Name:</th>
<th>Last Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>Province:</th>
<th>Postal Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contractor Information

<table>
<thead>
<tr>
<th>Rep:</th>
<th>Phone Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Details

<table>
<thead>
<tr>
<th>Basic Install</th>
<th>Description</th>
<th>Installed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Brand:**
- **Model:**
- **AFUE %:**
- **Gas Permit (#):**

<table>
<thead>
<tr>
<th>Thermostat</th>
</tr>
</thead>
</table>

- **Brand:**
- **Model:**

<table>
<thead>
<tr>
<th>Filter</th>
<th>Brand:</th>
<th>Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Optimization

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting</td>
<td></td>
</tr>
</tbody>
</table>

- **Two-Pipe Venting System**

| **Thermostat** | | **Smart Thermostat** |
|----------------|------------------|

<table>
<thead>
<tr>
<th>Filter</th>
<th>Size:</th>
<th>MERV Rating:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ductwork Modifications</th>
<th></th>
</tr>
</thead>
</table>

- **Return Air Drop**
- **Return Air Drop Elbow**
- **Turning Vanes**
- **Supply Air Plenum**
- **Lift Kit**
- **Other:**

SUBTOTAL:

PST:

GST:

TOTAL:
Additional Resources

- ENERGY STAR Verified HVAC Installation (ESVI), Environmental Protection Agency and Department of Energy, 2016. Available at https://www.energystar.gov/index.cfm?c=hvac_install.hvac_install_index
Background

The installation of a new high-efficiency furnace in an existing home can result in significant homeowner benefits including reduced energy consumption, lower homeowner utility bills, longer equipment lifespans, and improved occupant thermal comfort. However, without quality installation approaches and procedures, new furnace equipment may never deliver on its expected performance (Figure 1). ENERGY STAR® has found that new furnaces often do not perform to their rated efficiency with some systems suffering up to a 30% reduction in performance as a result of improper installation.¹

The gap between conventional and quality furnace installations represents a meaningful opportunity for industry players who promote and follow best practices. By applying quality installation techniques, contractors can ensure that they are compliant with present and future codes, permits, and utility programs. Additionally, the furnace enhancements and add-ons associated with quality installations can lead to increased revenue and profit margins as well as reduced call-backs for contractors.

In 2018, FortisBC introduced new Furnace and Boiler Replacement Program compliance criteria in an effort to increase the application of quality installation practices. However, follow-up program compliance evaluations have indicated that the new program requirements may require additional clarification, in particular two-pipe venting. Additionally, some replacement furnace installations were not consistent with condensate management requirements under the BC Building Code. This bulletin attempts to clarify two furnace installation criteria where non-compliant practices were frequently observed: venting and condensate management (Figure 2).

Venting

Older furnace equipment typically draws its combustion air from within the mechanical room and exhausts flue gases through a vent that terminates at the roof level. Replacing an older furnace with a new, high-efficiency condensing unit typically involves installing a new plastic exhaust vent and combustion air pipe that terminate on the outside of the home (Figure 3). In practice, installing this two-pipe venting can be challenging particularly where the existing furnace appliance is located in the centre of a finished home or where the creation of new wall or roof penetrations is difficult or undesirable. As a result, "band-aid" solutions are often applied in an attempt to satisfy the venting and combustion air requirements of high-efficiency furnaces. The following practices are not consistent with quality furnace installations and are **not compliant** with the FortisBC Furnace and Boiler Replacement Program requirements:

1. **COMBINING VENTING MATERIALS**
 The new venting must comply with *ULC-S636* and consist "entirely of factory-made parts, each designed to be assembled with the others..." in order to be compliant with *CSA B149.1 - Natural Gas and Propane Installation Code*. Combining venting materials from different manufacturers including pipes, fittings, primers, and cements is not *ULC S636* compliant. Poor seals at venting joints is a safety concern and may result in flue gas leakage.

2. **VENTING THROUGH AN EXISTING CHIMNEY**
 In many installation scenarios, routing the new plastic piping through an existing chimney is more favourable than other pathways. While this practice can be acceptable under some conditions, the venting must be adequately supported along its length (Figure 4). Per *CSA B149.1 - Natural Gas and propane installation code*, the new venting must be supported independently of the furnace appliance. Additionally, the entry point of the plastic venting into the chimney should be sealed such that the penetration is made airtight (Figure 5).

2 Vent systems must be composed of pipe, fittings, cements, and primers that are listed in *ULC-S636 - Standard for Type BH Gas Venting Systems*
3. **COMBUSTION AIR PIPE TERMINATION**

While it is well understood that flue gas venting must terminate at the exterior, the combustion air pipe is frequently terminated within the mechanical room, the attic, or within an existing combustion air duct (Figures 6, 7). These approaches are **not compliant** with the FortisBC *Furnace and Boiler Replacement Program*. The new plastic combustion air pipe is required to terminate on the outside of the building either above the roof or beyond an exterior wall.

Solutions

- In two and three-storey homes, the most common venting route is horizontally through an exterior wall (Figure 8). Sometimes a combustion air opening already exists and the hole can be reused for the new two-pipe venting once the existing duct/pipe has been removed. In situations where a new hole through the wall is required, the combustion air pipe can be routed adjacent to the existing furnace exhaust venting and terminated with a concentric vent termination kit flush to the wall or with two pipes with elbows up and down, respectively (Figure 9).

- In jurisdictions that do not permit side wall venting where the only route is horizontal, venting may have to exit an exterior wall and travel up the outside of the building - often through a soffit, terminating above the roof. Note that in this configuration the exterior venting must be insulated along its length and a custom, longer concentric vent termination will be needed to maintain a single flashing at the roof level.

- It is often practical to install the new venting vertically by using the existing B-vent route through the floors and roof above. A concentric termination kit can then be used at/through the existing B-vent flashing complete with a new storm collar.

- Where the home has a crawlspace, the new venting can be routed through the floor and out through the above grade basement foundation. Note that routing this way will require special drain/vent kits to deal with the condensation that will collect in this configuration (supplied by the furnace manufacturer).
Building Science Considerations

The installation of a high-efficiency furnace may result in lower energy bills and a more comfortable home. However, it can also lead to moisture and safety related issues if the unintended consequences of the upgrade are not considered. For example, the installation of new plastic venting often requires additional wall or roof penetrations that must now be waterproofed and airsealed.

The commonly observed practice of sealing the perimeter of new venting at the wall cladding (siding/stucco) is not sufficient - additional weatherization work is required. All new holes in the air/vapour barrier (polyethene sheet) and moisture barrier (building paper/sheathing membrane) must be sealed to adequately prevent rainwater leaks and air leakage condensation. The recommended detailing for a sidewall vent penetration (exterior and interior) is shown at the end of this document (see Appendix). For further information on the various interactions that can occur between the HVAC system, building enclosure, and other building systems refer to the Best Practices Guide for Air Sealing and Insulation Retrofits³ published by BC Housing.

Condensate Management

High-efficiency condensing furnaces produce acidic condensate during regular operation. This condensate must be removed from the furnace and delivered to the building sanitary system effectively in order to avoid furnace corrosion and reduced equipment service life (Figure 10). The following practices are not consistent with quality furnace installations and are not compliant with the BC Plumbing Code or the FortisBC Furnace and Boiler Replacement Program requirements:

1. DRAINING CONDENSATE TO THE EXTERIOR

The BC Plumbing Code requires that all new condensate plumbing be connected to the building sanitary drainage system either through a plumbed connection or indirectly through a floor drain (or similar). Condensate expelled directly to the exterior is not Code-compliant and may freeze during cold weather, tripping the float switch and prematurely shutting down the furnace unit (Figure 11).

2. TRAP BETWEEN CONDENSATE LINE AND SANITARY SYSTEM

Plumbed connections to the building sanitary system must include a trap between the condensate line and the sewage pipe as required by BC Plumbing Code (Figure 12). As the condensate is typically acidic, in many jurisdictions it must also be neutralized prior to being discharged into the sanitary system (Figure 13). ...

3. CRIMPED CONDENSATE LINE

Condensate lines that have bends along their routing may become crimped (Figure 14). Crimped condensate lines can obstruct the flow of acidic condensate causing build-up and early failure of the new furnace unit.

4. PROPER FURNACE PLACEMENT AND LEVELING

Most manufacturers recommend leveling or tipping the furnace to promote condensate drainage out of the system. If the acidic condensate is not effectively removed, it can corrode furnace components and reduce the service life of the equipment.

Solutions

- A floor drain or other sanitary system connection may not always be available in the mechanical room. Where this is the case, a pump can be utilized to move condensate to a higher elevation sanitary connection for disposal (Figure 15).

- Where the condensate routing requires turns and bends, braid-ed tubing or rigid PVC tubing is a practical solution to reduce the risk of crimping.

- Always confirm with the Authority Having Jurisdiction (AHJ), whether a condensate neutralizer (e.g. limestone chips) is required.

Key Points

- DO NOT MIX AND MATCH VENTING COMPONENTS AND USE MATERIALS THAT ARE ULC-S636 COMPLIANT
- TERMINATE THE NEW COMBUSTION AIR PIPE ABOVE THE ROOF OR BEYOND AN EXTERIOR WALL
- ENSURE THAT ALL NEW PENETRATIONS ARE MADE WATER AND AIRTIGHT
- PROVIDE ADEQUATE SUPPORT FOR NEW VENTING (HANGERS, BRACKETS, ETC.)
Key Points Cont’d

- CONFIRM THAT FURNACE PLACEMENT MEETS THE MANUFACTURER’S REQUIREMENTS
- CONNECT CONDENSATE LINE TO THE BUILDING SANITARY SYSTEM AND INCLUDE A NEW TRAP AS REQUIRED
- USE ACCEPTABLE CONDENSATE LINE MATERIALS FOR THE ROUTE

Appendix

EXTERIOR

INTERIOR

[Diagrams showing exterior and interior fittings and materials]